Enhanced Antimicrobial and Anticancer Activity of Silver and Gold Nanoparticles Synthesised Using Sargassum incisifolium Aqueous Extracts.
نویسندگان
چکیده
A detailed, methodical approach was used to synthesise silver and gold nanoparticles using two differently prepared aqueous extracts of the brown algae Sargassum incisifolium. The efficiency of the extracts in producing nanoparticles were compared to commercially available brown algal fucoidans, a major constituent of brown algal aqueous extracts. The nanoparticles were characterised using TEM, XRD and UV/Vis spectroscopy and zeta potential measurements. The rate of nanoparticle formation was assessed using UV/Vis spectroscopy and related to the size, shape and morphology of the nanoparticles as revealed by TEM. The antioxidant, reducing power and total polyphenolic contents of the aqueous extracts and fucoidans were determined, revealing that the aqueous extracts with the highest contents produced smaller, spherical, more monodisperse nanoparticles at a faster rate. The nanoparticles were assessed against two gram-negative bacteria, two gram-positive bacteria and one yeast strain. In contrast to the literature, the silver nanoparticles produced using the aqueous extracts were particularly toxic to Gram-negative bacteria, while the gold nanoparticles lacked activity. The cytotoxic activity of the nanoparticles was also evaluated against cancerous (HT-29, MCF-7) and non-cancerous (MCF-12a) cell lines. The silver nanoparticles displayed selectivity, since the MCF-12a cell line was found to be resistant to the nanoparticles, while the cancerous HT-29 cell line was found to be sensitive (10% viability). The gold nanoparticles displayed negligible toxicity.
منابع مشابه
Biosynthesis of Silver Nanoparticles from Marine Seaweed Sargassum cinereum and their Antibacterial Activity
Seaweed extracts of Sargassum cinereum was used as a reducing agent in the eco-friendly extracellular synthesis of silver nanoparticles from an aqueous solution of silver nitrate (AgNO3). High conversion of silver ions to silver nanoparticles was achieved with a reaction temperature of 100(°) and a seaweed extract concentration of 10% with a residential time of 3 h. Formation of silver nanopart...
متن کاملBiogenesis of silver nanoparticles using selected plant leaf extract; characterization and comparative analysis of their antimicrobial activity
Objective(s): To study the antimicrobial property of green synthesised silver nano metals with M.balbisiana, A.indica and O.tenuiflorm and their enhanced antibacterial activity, assessment of antimicrobial effect. And to explore the possible mechanism of AgNPs synthesis in the active constitutions of selected temperate plant extracts Materials and methods:Biosynthesis of AgNPs using plant extr...
متن کاملFacile Approach to Synthesize and Characterization of Silver Nanoparticles by Using Mulberry Leaves Extract in Aqueous Medium and its Application in Antimicrobial Activity
There is a huge demand of silver nanoparticles in the global market due to their special properties and applications in different fields such as nanomedicine , dentists , nanocatalysis, nanoelectronics, textile field, waste water treatment.The major cons of top down and Bottom up methods are the synthesis processes are highly costly, time consuming and many harmful chemicals are used. To reduce...
متن کاملGreen Synthesis of Silver Nanoparticles Using Marine Brown Algae Sargassum
The present study was aimed to optimize the protocol for the synthesis of silver nanoparticles using aqueous extracts of Sargassum swartzii (Turner) C.Agardh and evaluate cytotoxic potetnials using brine shrimp bio-assay activity and Trypan blue dye exclusion method. The reduction of pure Ag+ ions was monitored by measuring the UV-Vis spectrum of the solution at 200-900 nm using Shimadzu spectr...
متن کاملElucidation of Biological Activity of Silver Based Nanoparticles Using Plant Constituents of Syzygium cumini
We report the efficacy of the silver nanoparticles (AgNPs) synthesized using the leaf and bark extracts of Syzygium cumini (common name Jamun) with silver nitrate (AgNO3)which were used as both reducing and capping agent at varied temperatures- 25°C, 37°C and 80°C. Three sets of AgNPs from leaf and bark extracts, were synthesized at the above mentioned temperatures, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 21 12 شماره
صفحات -
تاریخ انتشار 2016